THE INCREDIBLE HUD

MARCELO L. BRANDON G. ADITYA B. NIKHIL S.

Outline

- Project overview
- Project-specific success criteria
- Block diagram
- Component selection rationale
- Packaging design
- Schematic and theory of operation
- PCB layout
- Software design/development status
- Project completion timeline
- Questions/Discussion

Project Overview

- Helmet-based heads-up display
- Displays telemetry data such as speed, direction, temperature, and G-force
- Displays image from web camera to implement a "rear view mirror"
- The user can select different display modes.
- An accelerometer, GPS module, and thermometer will generate telemetry data
- Data will be recorded onto SD card to allow for future review
- The battery pack, motherboard and primary PCB will be located in a secondary backpack enclosure

Project-Specific Success Criteria

- 1. An ability to display critical system information via a heads-up-display (HUD).
- 2. An ability to measure telemetry information (speed, acceleration, temperature, and GPS) and store it to flash memory.
- 3. An ability to maintain portability through the use of a rechargeable battery system.
- 4. An ability to enable/disable important features within the display (full information, minimal, on/off).
- 5. An ability to plot recorded GPS data on a map while overlaying telemetry information on a computer.

Motherboard Selection Rationale

- Main design constraints :
 - Small size
 - Low power consumption
 - Video-processing capable (VGA output and web camera handling)
 - Robust packaging (case/shield)
- Chose Atom (eBOX510-820-FL)
 - Met constraints
 - Pulls 2W, 1.1 GHz clock, and supports UNIX and Windows Embedded 7 with great driver support
 - Other option was ARM Cortex A8 based Beagle Board
 - clocks 600 MHz and only supports UNIX with driver support not guaranteed
 - Has standard packaging solutions no custom fabrication required
 - Case doubles as a heat sink

Microcontroller Selection Rationale

- Worst-case analysis at start of project:
 - 12 ADC channels for peripherals
 - At least 2 and preferably 3 UARTs
 - $-2I^{2}C$
 - Enough RAM for lots of buffers
- Chose PIC32MX564F128L
 - Met all constraints plus 'wiggle room'
 - Main contender was Atmel line of products
 - None met all of the desired constrains
 - Group experience with PICs, especially PIC32
 - Perfect micro (as of now) PIC24FJ64GA106

Projector Selection Rationale

- Design considerations :
 - Small
 - Lightweight
 - USB powered
 - High resolution (WVGA)
 - Focused at infinity
- Chose Microvision SHOWX+ Laser pico-projector
 - Met considerations
 - Completely solid state
 - Competitor was Optoma PK201 LED pico-projector
 - o Slightly brighter but also 40g heavier
 - LED projection technology requires manual focusing and has moving parts – less rugged

Packaging Design: Helmet

- Helmet module:
 - Projector
 - Optic glass/lens
 - Fiberglass visor
 - Thermometer
 - Rear view camera
 - Control buttons

Packaging Design: Backpack

- Backpack module:
 - Motherboard
 - PCB
 - Battery
 - Cooling fans
- Promotes mobility and portability
- Robust for weather and impact resistance
- Streamlined

Schematic/Theory of Operation: Peripherals and Microcontroller

Schematic/Theory of Operation: Battery Charging Circuit

Schematic/Theory of Operation: Peripherals and Interfacing

Schematic/Theory of Operation: Fuel Gauge and Voltage Regulator

Software Design / Development Status

Peripheral Name	Comm. Status	Algorithm	Algorithm Status
PC RS232 Comm.	1xUART Tested OK	Functions to send data packets and receive interrupt	Implemented Tested OK
GPS	1xUART Tested OK	Interpretation of packets received + config if necessary	Unimplemented
Accelerometer	3xADC Tested OK	Conversion of data into g-force measurements	Implemented Tested OK
Thermometer	1xADC Untested	Conversion of data into temperature measurement	Unimplemented
Charge Counter	1xl ² C Untested	Configuration setup and interpretation of sent packets	Unimplemented (#1 PRIORITY)
Buttons	7xGPIO 1 Tested	Sampling of buttons + assignment to actions	1 Implemented Tested OK
GUI elements on Atom	1xRS232 Untested	Display GUI, receive/interpret packets from PIC32	Unimplemented

Project Completion Timeline

Week#	Objectives and Milestones
Week 08	Finish PCB adjustments pending Design Review & Course Staff feedback, prototype battery management circuitry, mockup helmet GUI
Week 09	Complete PCB Design & send for fabrication, begin intensive motherboard software development, backpack unit specification
Week 10	Receive PCB and begin population, procure backpack unit housing, further develop motherboard software and helmet GUI
Week 11	Debug PCB, begin testing on a system level, begin software testing, begin 'companion application' development (for logged data)
Week 12	Debug software and hardware, continue system level testing, continue companion application development
Week 13	Debug software and hardware, continue system level testing, continue companion application development
Week 14	Debug software and hardware, continue system level testing, continue companion application development
Week 15	Debug software and hardware, continue system level testing, continue companion application development
Week 16	Demonstrate PSSCs and submit final report and poster

Questions?